ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Letter

High-dielectric-constant and low-loss microwave dielectric in the (1-x)La $(Mg_{0.5}Ti_{0.5})O_3$ – $x(Ca_{0.8}Sr_{0.2})TiO_3$ solid solution system

Cheng-Liang Huang*, Jhih-Yong Chen

Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan

ARTICLE INFO

Article history:
Received 25 September 2010
Received in revised form 1 November 2010
Accepted 3 November 2010
Available online 16 November 2010

Keywords: Crystal growth Dielectric response

ABSTRACT

The microwave dielectric properties and microstructures of $(1-x)\text{La}(\text{Mg}_{0.5}\text{Ti}_{0.5})O_3-x(\text{Ca}_{0.8}\text{Sr}_{0.2})\text{TiO}_3$ ceramics, prepared by a mixed oxide route, have been investigated. The forming of solid solutions was confirmed by the XRD patterns and the measured lattice parameters for all compositions. A near zero τ_f was achieved for samples with x=0.5, although the dielectric properties varied with sintering temperature. The $Q \times f$ value of $0.5\text{La}(\text{Mg}_{0.5}\text{Ti}_{0.5})O_3-0.5(\text{Ca}_{0.8}\text{Sr}_{0.2})\text{TiO}_3$ increased up to $1475\,^{\circ}\text{C}$, after which it decreased. The decrease in dielectric properties was coincident with the onset of rapid grain growth. The optimum combination of microwave dielectric properties was achieved at $1475\,^{\circ}\text{C}$ for samples where x=0.5 with a dielectric constant ε_r of 47.12, a $Q \times f$ value of $35,000\,\text{GHz}$ (measured at $6.2\,\text{GHz}$) and a τ_f value of $-4.7\,\text{ppm}/^{\circ}\text{C}$.

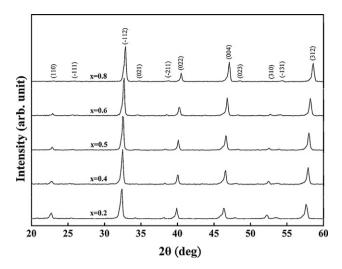
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The development of a microwave dielectric resonator for applications in communication systems such as cellular phones, wireless location networks (WLAN), direct broadcasting satellites (DBS) and global positioning systems (GPS) has progressed rapidly in the past decade [1–4]. These dielectric resonators must satisfy three main criteria: a high dielectric constant for miniaturization, a low dielectric loss (Q > 5000, where Q=1/tan δ) for better selectivity and a near-zero temperature coefficient of resonant frequency (τ_f) for stable frequency stability [5,6]. However, high-dielectric-constant materials exhibit high dielectric loss (low Q × f value), whereas low-loss ceramics are usually accompanied by a low ε_r value [7].

Several complex perovskite ceramics $A(B_{1/2}^{2+}B_{1/2}^{4+})O_3$ (where A=La, Nd, Sm; B^{2+} =Mg, Zn, Co, Ni, Mn; B^{4+} =Ti and Sn) have been reported due to their excellent microwave dielectric properties [1,8–12]. Among them, La(Mg_{0.5}Ti_{0.5})O₃ exhibits dielectric properties of high $\varepsilon_r \sim 29$ and the $Q \times f$ value $\sim 75,500$ GHz [13,14]. However, the τ_f value (~ -65 ppm/°C) is too high for many its practical applications. With the aim of providing compensation for the temperature coefficient, 0.5La(Mg_{0.5}Ti_{0.5})O₃–0.5CaTiO₃ material was developed to show a near zero τ_f value but it was found to decrease the $Q \times f$ value to 12,400–24,470 GHz [15,16]. The substitution of CaTiO₃ by Ca_{0.8}Sm_{0.4/3}TiO₃ had been reported to result in

a higher $Q \times f$ value of 26,500 GHz [17]. Still, the $Q \times f$ needs to be promoted before putting it to a practical application as GPS antennas. A number of dielectrics were also used as a τ_f compensator for La(Mg_{0.5}Ti_{0.5})O₃ [18–20].


In this work, instead of CaTiO₃ or Ca_{0.8}Sm_{0.4/3}TiO₃, Ca_{0.8}Sr_{0.2}TiO₃ ceramics ($\varepsilon_r \sim 181$, $Q \times f \sim 8300\,\text{GHz}$, $\tau_f \sim 991\,\text{ppm/}^\circ$ C [21]) was chosen as a compensator for τ_f . The studied system turned out to show a much better combination of microwave dielectric properties. The resultant microwave dielectric properties were analyzed based upon the densification, the X-ray diffraction (XRD) patterns and the microstructures of the ceramics. The correlation between the microstructure and the $Q \times f$ value was also investigated.

2. Experimental procedure

Samples of $(1-x)\text{La}(Mg_{0.5}\text{Ti}_{0.5})O_3-x(Ca_{0.8}\text{Sr}_{0.2})\text{TiO}_3~(x=0.2-0.8)$ were synthesized by the conventional solid-state method. The starting materials were high-purity oxide powders (>99.9%): CaCO_3, SrCO_3, La_2O_3, MgO and TiO_2. Stoichiometric mixtures of $(Ca_{0.8}\text{Sr}_{0.2})\text{TiO}_3$ and La $(Mg_{0.5}\text{Ti}_{0.5})O_3$ were separately prepared and ground in distilled water for 24 h in a ball mill using agate balls. $(Ca_{0.8}\text{Sr}_{0.2})\text{TiO}_3$ and La $(Mg_{0.5}\text{Ti}_{0.5})O_3$ powders were calcined at 1100°C and 1200°C for 4h, respectively. The calcined powders were mixed according to the molar fraction $(1-x)\text{La}(Mg_{0.5}\text{Ti}_{0.5})O_3-x(Ca_{0.8}\text{Sr}_{0.2})\text{TiO}_3$ and re-milled for 24h. The fine powder with 3 wt% of a 10% solution of PVA as a binder (PVA 500, Showa, Japan) was pressed into pellets with dimensions of 11 mm in diameter and 5 mm in thickness under the pressure of 200 MPa. These pellets were sintered at temperatures of 1375–1525 $^\circ\text{C}$ for 4 h in air. The heating rate and the cooling rate were both set at $10^\circ\text{C}/\text{min}$.

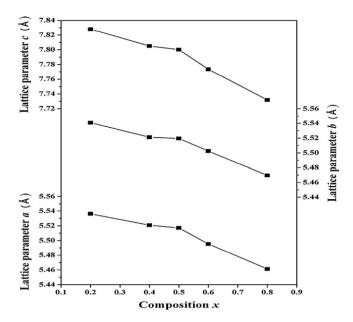
The bulk X-ray diffraction (XRD, Siemens D5000) spectra were collected using Cu $K\alpha$ (λ = 0.15406 nm) radiation (at 40 kV and 40 mA) and a graphite monochrometer in the 2θ range of 20–60°. The microstructures were evaluated surfaces by scanning electron microscopy (SEM; Philips XL-40FEG, Eindhoven, the Netherlands).

^{*} Corresponding author. Tel.: +886 6 2757575x62390; fax: +886 6 2345482. E-mail address: huangcl@mail.ncku.edu.tw (C.-L. Huang).

Fig. 1. X-ray diffraction patterns of (1-x)La $(Mg_{0.5}Ti_{0.5})O_3$ – $x(Ca_{0.8}Sr_{0.2})TiO_3$ ceramic system sintered at 1475 °C for 4 h with different x values.

The apparent densities of the sintered pellets were measured by the Archimedes method. The dielectric constant (ε_r) and the quality factor values (Q) at microwave frequencies were measured using the Hakki–Coleman dielectric resonator method [22,23]. A system combining a HP8757D network analyzer and a HP8350B sweep oscillator was employed in the measurement. For temperature coefficient of resonant frequency (τ_f) , the technique is the same as that of quality factor measurement. The test set was placed over a thermostat in the temperature range of 4 25 to 4 80 °C. 4 10 4 10 can be calculated by considering the change in resonant frequency (Δf) 1.

$$\tau_f = \frac{f_2 - f_1}{f_1(T_2 - T_1)} \tag{1}$$

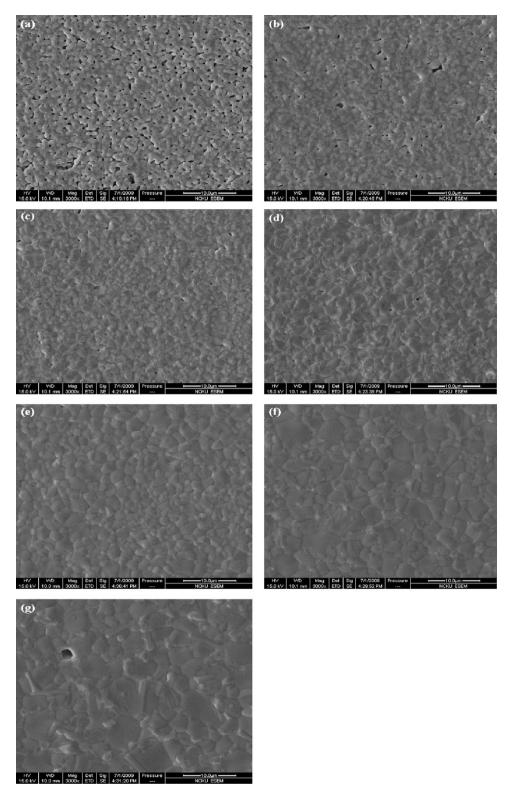

where f_1 and f_2 represent the resonant frequencies at T_1 and T_2 , respectively.

3. Results and discussion

Fig. 1 shows the room temperature XRD patterns recorded for (1-x)La $(Mg_{0.5}Ti_{0.5})O_3$ - $x(Ca_{0.8}Sr_{0.2})TiO_3$ ceramic system at 1475 °C for 4h. The complex-perovskite structure (Monoclinic: ICDD-PDF #01-072-6152) was identified without any second phase for all compositions tested in the experiment. As the x value increases, the peaks in the XRD spectra shift to a higher angle implying the forming of solid solution. This is because the ionic radius of La³⁺ (1.032 Å) in La(Mg_{0.5}Ti_{0.5})O₃ and 0.8Ca²⁺ + 0.2Sr²⁺ (Ca = 1.00 Å, Sr = 1.18 Å) in $(Ca_{0.8}Sr_{0.2})TiO_3$ are similar; whereas Mg^{2+} (0.72 Å) in La($Mg_{0.5}Ti_{0.5}$)O₃ is larger than that of Ti^{4+} (0.605 Å) in (Ca_{0.8}Sr_{0.2})TiO₃ [24]. Although the superlattice peak is barely detectable, it is almost certain that the entire solid solution is distorted due to rotation of the octahedral. This in itself will generate the superlattice at the (-111), (021) and (-211) positions. These positions are weak and may not be observable in XRD since X-ray is insensitive to small displacements. The measured lattice parameters (Fig. 2) almost linearly decrease from x = 0.2 to x = 0.8 further confirming it tends to form a continuous solid solution.

Table 1 Microwave dielectric properties of (1-x)La $(Mg_{0.5}Ti_{0.5})O_3-x(Ca_{0.8}Sr_{0.2})TiO_3$ ceramic system sintered at 1475 °C for 4 h.

x value	Apparent density (g/cm³)	ε_r	$Q \times f(GHz)$	$\tau_f(\text{ppm}/^{\circ}\text{C})$
0.8	4.46	84.73	8,500	197
0.6	4.83	54.47	19,600	26.2
0.5	5.08	47.12	35,000	-4.7
0.4	5.22	41.43	40,800	-32.3
0.2	5.51	34.22	52,200	-56.6


Fig. 2. The lattice parameters of the (1-x)La(Mg_{0.5}Ti_{0.5})O₃-x(Ca_{0.8}Sr_{0.2})TiO₃ solid solutions

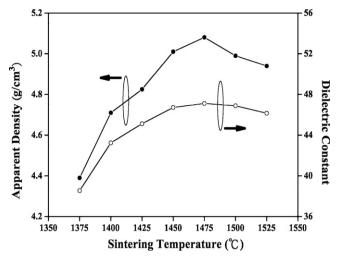
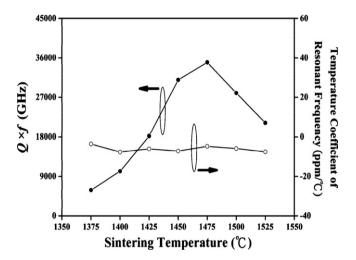

Table 1 demonstrates the microwave dielectric properties of $(1-x)\text{La}(\text{Mg}_{0.5}\text{Ti}_{0.5})\text{O}_3-x(\text{Ca}_{0.8}\text{Sr}_{0.2})\text{TiO}_3$ ceramic system sintered at 1475 °C for 4 h. The dielectric properties are functions of x value. Notice that the ceramic system shows a good temperature stability $(\tau_f = -4.7 \text{ ppm}/^{\circ}\text{ C})$ at x = 0.5 indicating a suitable composition for practical applications.

Fig. 3 shows the SEM photographs of $0.5\text{La}(Mg_{0.5}\text{Ti}_{0.5})O_3-0.5(\text{Ca}_{0.8}\text{Sr}_{0.2})\text{TiO}_3$ (hereafter referred to as 5LMCST) ceramics after sintering at different temperatures for 4 h. Porous microstructures were observed at 1375 °C. The grain size increases as the sintering temperature increases and a noticeable grain growth and a relatively uniform surface morphology are observed at 1475 °C. Further increase in the sintering temperature would lead to a rapid grain growth resulting in a forming of pores as illustrated in Fig. 3(g).


Fig. 4 shows the apparent densities and ε_r of 5LMCST ceramics after sintering at different temperatures for 4h. With increasing sintering temperature, the apparent density increased to a maximum value of 5.08 g/cm³ at 1475 °C and thereafter it slightly decreased. The increase of density was a result from grain growth, whereas the decrease of density was due to the presence of pores resulted from the rapid grain growth as shown in Fig. 3. Variation of ε_r was consistent with that of density. The dielectric constant increased with increasing sintering temperature due to a denser specimen. After reaching its maximum at 1475 °C it decreased and a maximum ε_r value of 47.12 can be achieved.

The $Q \times f$ and τ_f values of 5LMCST ceramics at different sintering temperatures for 4 h are demonstrated in Fig. 5. By increasing the sintering temperature, the $Q \times f$ value increased to a maximum value of 35,000 GHz (at 6.2 GHz) and thereafter it decreased. It showed a similar trend with that of density suggesting that the variation of $Q \times f$ was mainly a result from its corresponding density. In addition, uniform morphology also assisted in reducing the lattice imperfection and lowering the dielectric loss. Significant change in the temperature coefficient of resonant frequency (τ_f) was not observed as expected because the τ_f value is mainly related to the compositional variance, the additives, and the existence of second phase of the material. A τ_f value of $-4.7 \, \mathrm{ppm}/^{\circ}\mathrm{C}$ is obtained for specimen sintered at $1475\,^{\circ}\mathrm{C}$ for $4\,\mathrm{h}$.

Fig. 4. Apparent density and dielectric constant of $0.5La(Mg_{0.5}Ti_{0.5})$ $O_3-0.5(Ca_{0.8}Sr_{0.2})TiO_3$ ceramics as a function of the sintering temperature.

Fig. 5. $Q \times f$ and τ_f value of $0.5 La(Mg_{0.5}Ti_{0.5})O_3 - 0.5(Ca_{0.8}Sr_{0.2})TiO_3$ ceramics as a function of the sintering temperature.

4. Conclusion

The microwave dielectric properties and microstructures of (1-x)La $(Mg_{0.5}Ti_{0.5})O_3$ - $x(Ca_{0.8}Sr_{0.2})TiO_3$ have been investigated

and the result show that these materials possess relatively high $Q \times f$, high dielectric constant and tunable τ_f . The microwave dielectric properties are strongly correlated to the density and the compositional ratio of the specimen. The proposed system exhibits a good combination of ε_r = 47.12, $Q \times f$ = 35,000 GHz, τ_f = -4.7 ppm/° C, at x = 0.5, which can be as a suitable candidate material for today's 3G passive components particularly the small-sized GPS patch antennas.

Acknowledgement

This work was supported by the National Science Council of Taiwan under grant NSC 97-2262-E-006-013-MY3.

References

- [1] Y.B. Chen, J. Alloys Compd. 478 (2009) 781-784.
- [2] G.G. Yao, P. Liu, Physica B 405 (2010) 547–551.
- [3] C.L. Huang, J.Y. Chen, C.C. Liang, Mater. Res. Bull. 44 (2009) 1111–1115.
- [4] C.L. Huang, J.Y. Chen, J. Am. Ceram. Soc. 93 (2010) 470-473.
- [5] J. Pei, Z. Yue, F. Zhao, Z. Gui, L. Li, J. Alloys Compd. 459 (2008) 390-396.
- [6] C.L. Huang, C.F. Tseng, W.R. Yang, T.J. Yang, J. Am. Ceram. Soc. 91 (2008) 2201–2204.
- [7] C.L. Huang, C.Y. Tai, C.Y. Huang, Y.H. Chien, J. Am. Ceram. Soc. 93 (2010) 1999–2003.
- [8] S.Y. Cho, M.K. Seo, K.S. Hong, S.J. Park, I.T. Kim, Mater. Res. Bull. 32 (1997) 725–735.
- [9] C.F. Tseng, C.L. Huang, C.H. Hsu, J. Am. Ceram. Soc. 90 (2007) 1619-1622.
- [10] Y.C. Chen, Y.H. Chang, J. Alloys Compd. 477 (2009) 450-453.
- [11] D.Y. Lee, S.J. Yoon, J.H. Yeo, S. Nahm, J.H. Paik, K.C. Whang, B.G. Ahn, J. Mater. Sci. Lett. 19 (2000) 131–134.
- [12] H.T. Song, C.S. Hsu, M.T. Kuo, C.L. Huang, Mater. Lett. 58 (2004) 2829-2833.
- [13] S.Y. Cho, C.H. Kim, D.W. Kim, K.S. Hong, J.H. Kim, J. Mater. Res. 14 (1999) 2484–2487.
- [14] Y.B. Chen, J. Alloys Compd. 480 (2009) 265-269.
- [15] M.P. Seabra, M. Avdeev, V.M. Ferreira, R.C. Pullar, N.M. Alford, J. Eur. Ceram. Soc. 23 (2003) 2403–2408.
- [16] C.L. Huang, Y.B. Chen, C.W. Lo, Jpn. J. Appl. Phys. 44 (2005) 3147-3150.
- [17] J.Y. Chen, C.L. Huang, J. Alloys Compd. (2010), doi:10.1016/j.jallcom.2010.09.048.
- [18] Y.B. Chen, J. Alloys Compd. 491 (2010) 330–334.
- [19] Y.B. Chen, J. Alloys Compd. 496 (2010) 660-664.
- [20] Y.B. Chen, J. Alloys Compd. 500 (2010) 190-194.
- [21] P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, D.S. Cannell, J. Eur. Ceram. Soc. 21 (2001) 1723.
- [22] B.W. Hakki, P.D. Coleman, IEEE Trans. Microwave Theory Tech. 8 (1960) 402-410.
- [23] W.E. Courtney, IEEE Trans. Microwave Theory Tech. 18 (1970) 476–485.
- [24] R.D. Shannon, Acta Cryst. A32 (1976) 751–767.